User Graph Regularized Pairwise Matrix Factorization for Item Recommendation

نویسندگان

  • Liang Du
  • Xuan Li
  • Yi-Dong Shen
چکیده

Item recommendation from implicit, positive only feedback is an emerging setup in collaborative filtering in which only one class examples are observed. In this paper, we propose a novel method, called User Graph regularized Pairwise Matrix Factorization (UGPMF), to seamlessly integrate user information into pairwise matrix factorization procedure. Due to the use of the available information on user side, we are able to find more compact, low dimensional representations for users and items. Experiments on real-world recommendation data sets demonstrate that the proposed method significantly outperforms various competing alternative methods on top-k ranking performance of one-class item recommendation task.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multi-Linear Interactive Matrix Factorization

Recommender systems, which can significantly help users find their interested items from the information era, has attracted an increasing attention from both the scientific and application society. One of the widest applied recommendation methods is the Matrix Factorization (MF). However, most of MF based approaches focus on the user-item rating matrix, but ignoring the ingredients which may ha...

متن کامل

Leveraging tagging and rating for recommendation: RMF meets weighted diffusion on tripartite graphs

Recommender systems (RSs) have been a widely exploited approach to solving the information overload problem. However, the performance is still limited due to the extreme sparsity of the rating data. With the popularity of Web 2.0, the social tagging system provides more external information to improve recommendation accuracy. Although some existing approaches combine the matrix factorization mo...

متن کامل

Collaborative Filtering: Weighted Nonnegative Matrix Factorization Incorporating User and Item Graphs

Collaborative filtering is an important topic in data mining and has been widely used in recommendation system. In this paper, we proposed a unified model for collaborative filtering based on graph regularized weighted nonnegative matrix factorization. In our model, two graphs are constructed on users and items, which exploit the internal information (e.g. neighborhood information in the user-i...

متن کامل

Genetic Algorithm and Graph Theory Based Matrix Factorization Method for Online Friend Recommendation

Online friend recommendation is a fast developing topic in web mining. In this paper, we used SVD matrix factorization to model user and item feature vector and used stochastic gradient descent to amend parameter and improve accuracy. To tackle cold start problem and data sparsity, we used KNN model to influence user feature vector. At the same time, we used graph theory to partition communitie...

متن کامل

Towards Improving Top-N Recommendation by Generalization of SLIM

Sparse Linear Methods (SLIM) are state-of-the-art recommendation approaches based on matrix factorization, which rely on a regularized l1-norm and l2-norm optimization –an alternative optimization problem to the traditional Frobenious norm. Although they have shown outstanding performance in Top-N recommendation, existent works have not yet analyzed some inherent assumptions that can have an im...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011